
337

0195-928X/03/0300-0337/0 © 2003 Plenum Publishing Corporation

International Journal of Thermophysics, Vol. 24, No. 2, March 2003 (© 2003)

Simultaneous Measurement of Viscosity and Density
with an Oscillating-Disk Instrument: The Effect of
Fixed Plates

A. H. Krall1 and J. V. Sengers1–3

1 Institute for Physical Science and Technology, University of Maryland, College Park,
Maryland 20742, U.S.A.

2 Department of Mechanical Engineering, University of Maryland, College Park, Maryland
20742, U.S.A.

3 To whom correspondence should be addressed. E-mail: sengers@ipst.umd.edu

Received July 8, 2002

The period and damping of the free motion of a body oscillating in a fluid
depend on the fluid’s viscosity and density. Commonly, a working equation
which expresses the damping as a function of the viscosity and density is solved
for the viscosity, the damping being measured and the density being treated as
an independently supplied parameter. Another working equation exists for the
period, and, in general, the period depends on a combination of the viscosity
and the density which is linearly independent of the combination that appears in
the damping equation. It is, therefore, in principle, possible to determine both
the viscosity and the density by a simultaneous solution of the two coupled
working equations, since the period also is measured. In this paper, the working
equations that describe the oscillating-disk viscometer are reviewed and their
simultaneous solution is considered. The effect of fixed plates symmetrically
located above and below the oscillating disk is of specific interest. The paper’s
main result is that fixed plates can dramatically increase the independence of the
damping and period working equations, so that it becomes indeed feasible to
determine the viscosity and the density of a fluid simultaneously from the
damping and period of oscillating motion. A price is paid, however, because the
instrument’s working equations when plates are present have multiple solutions.
Under special conditions, these multiple solutions can coalesce, and then one
can only deduce the viscosity from the damping equation if the density is known
a priori.

KEY WORDS: densimeter; oscillating-disk viscometer; simultaneous viscosity
and density measurement; toluene; viscometer; viscosity.



1. INTRODUCTION

Some of the most commonly used methods to measure the viscosity of a
fluid require that the fluid’s density be known. This is true, for example, for
the gravity-driven capillary-flow method [1] and the falling-body method
[2]. In these methods, one measures directly a single quantity (time of efflux
of a certain volume of fluid in the capillary-flow method, and a body’s fall
time over a certain distance in the case of the falling-body method) which is
related to the viscosity and density by a working equation. The traditional
approach has been to include in the viscometer a provision for measuring
the fluid’s temperature and pressure. The density can then be calculated
from an equation of state, if one is available. Alternatively, the experimenter
can make a parallel measurement of the density using a densimeter charged
with another sample of the fluid under study and operated at the same tem-
perature and pressure. Currently there is interest in simultaneous measure-
ments of the viscosity and the density. By this we mean measurements of the
two properties made in the same instrument, on the same sample, at the
same time. With simultaneous methods, the experimenter is free to study
fluids for which an accurate equation of state is not available. Simultaneous
measurements have an advantage also over parallel measurements of the two
properties, since they eliminate errors involved with producing identical
conditions of temperature and pressure in separate instruments.

One way to achieve simultaneous measurements is to build a device
that incorporates conceptually distinct density and viscosity measurement
methods into one apparatus. For example, Wagner and coworkers [3, 4]
used a nearly frictionless magnetic coupling to levitate a cylindrical sinker
which is immersed in the fluid under study. The force necessary to levitate
the sinker is less than its known weight by the buoyant force exerted on it
by the fluid. Since the sinker volume is known, the fluid density can be
determined. Furthermore, a rotary motion can be imparted to the sinker,
the magnetic suspension acting then as a bearing. When an external driving
torque is switched off, the rotary motion decays exponentially. The decay
rate is a function of the fluid’s viscosity and density, so the viscosity can be
determined. Greer and coworkers [5, 6] used a similar device, but they
imparted a steady motion to the sample cell while holding the sinker at a
fixed position magnetically. Veliyulin and coworkers [7] used an oscillat-
ing-disk viscometer in which the suspension wire hung from an electronic
balance, enabling measurement of the buoyant force.

We note that in these methods, the density and viscosity working
equations are not coupled. That is, the viscosity does not appear in the
working equation of the density measurement. Indeed, these instruments
do not require fluid flow for the measurement of the density.
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Another type of simultaneous measurement is possible with viscome-
ters that employ a vibrating body. Examples of vibrating-body viscometers
include vibrating-wire viscometers and torsionally vibrating piezoelectric
crystal viscometers [8], as well as oscillating-body viscometers [9]. In
the case of oscillating-body viscometers, a body is set into an oscillatory
motion which is then allowed to decay freely. The motion is characterized
by the period and the decay rate of the exponentially damped harmonic
motion. On the other hand, in the vibrating-crystal method the crystal is
driven at constant amplitude with the aid of an external periodic force
of variable frequency. Again, there are two parameters that describe the
motion: the resonant period and the width of the resonance curve.
Generally, there are two parameters that describe vibratory motion, and
they are both affected by the hydrodynamic drag exerted on the body by
the fluid. In cases of interest, both motional parameters depend on both
fluid properties, density and viscosity. Since both parameters can be
measured, vibrating-body viscometers can, in principle, provide simulta-
neous measurements of the density and viscosity. The working equations
are coupled, however. That is, two equations each relate the density and
viscosity with the two motional parameters, and these equations are typi-
cally rather complicated.

Padua and coworkers [10–12] have made simultaneous density and
viscosity measurements with vibrating-wire viscometers. The coupled
working equations describing such instruments are formally quite similar to
those pertaining to the oscillating-disk viscometer, which we will provide in
the next section. Padua and coworkers, however, employed an ingenious
design that decreases the coupling and greatly increases the precision of
their instrument’s density measurements. That is, they arranged for the
tension in the wire to be provided by the weight of a sinker immersed in the
fluid. This design causes the wire’s vibration period to have an extra fluid
density dependence (due to the buoyancy of the sinker, independent of the
viscosity) in addition to the density dependence introduced through
hydrodynamic drag (which depends on both fluid properties). A precision
for the density at the level of 0.05% was attained, comparable to that
provided by stand-alone densimeters, while the viscosity was measured with
a precision of 0.5% [11, 12].

We have used an oscillating-disk viscometer to make simultaneous
measurements of viscosity and density [13]. In an oscillating-disk instru-
ment, the dependence of the motional parameters on the fluid properties
is due to hydrodynamic drag only. A consequence is that the density and
viscosity are measured with approximately equal precision. In Ref. 13, we
attained a precision of about 0.2% for the simultaneously measured viscosity
and density of liquid toluene over a wide range of temperatures and pressures.
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The period and damping measurements upon which Ref. 13 was based
also provided the basis of a set of experimental viscosities for liquid toluene
at pressures up to 30 MPa [14]. However, in Ref. 14, we did not measure
the density simultaneously. Instead, we calculated the density of toluene
from an equation of state [15], and determined the viscosity of toluene
from the measured damping. Thus in Ref. 14 we worked only with one
of the instrument’s working equations, namely the one sensitive to the
damping. As we showed in Ref. 13, the agreement of the viscosity found in
this way with the viscosity as measured simultaneously with the density was
at the level of 0.4%. Agreement of the simultaneously determined density
with the density predicted by the equation of state was comparable [13].

The emphasis of Ref. 13 was primarily on experimental details. In this
paper, we discuss some mathematical aspects of simultaneous measure-
ments with oscillating-disk viscometers, in particular, the effects of the
often-used fixed plates, which have not been noticed before in the literature
[13, 16, 17]. We also include here an experimental section summarizing
the measurements of Ref. 13 and comparing them to more recent recom-
mended interpolating equations for the properties of toluene.

2. WORKING EQUATIONS FOR AN OSCILLATING-DISK
VISCOMETER

In an oscillating-disk viscometer, a disk hangs from a suspension wire.
The disk oscillates about its axis, the wire supplying a linear restoring
torque. When in vacuo, the disk’s angular displacement from the rest posi-
tion, a(t), is given by [17]

a(t)=A0 exp(− D0w0t) sin(w0t) (1)

and, when in a fluid, by

a(t)=A exp(− Dwt) sin(wt). (2)

Here D is the damping in the fluid and D0 the damping in vacuo. The
oscillation periods are T=2p/w in the fluid and T0=2p/w0 in vacuo. The
amplitudes A and A0 do not enter into the working equations, and also
need not be measured since techniques exist for determining the period and
damping from time-interval measurements.

As is discussed in, for example, Refs. 9 and 17, D and T are related to
the fluid’s density r and viscosity g through

(s+D0)2+1+D(s)=0, (3)
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where s=(− D+i) G with G=T0/T and i=`− 1; D(s) is the Laplace
transform of the viscous torque exerted on the disk by the fluid. To obtain
an explicit expression for D(s), one needs to solve a partial differential
equation subject to boundary conditions on all surfaces. There is no known
exact solution for the two-dimensional problem corresponding to a disk
(axial symmetry eliminates one dimension). A first approximation to D(s)
is found by considering infinite oscillating bodies which yield an easy-to-
solve one-dimensional problem. Thus, one estimates the torque on each of
the two flat surfaces of the disk by calculating the torque exerted on a cir-
cular region, of radius R and co-axial with the axis of oscillation, contained
within an oscillating plane of infinite radial extent. Likewise, the torque on
the cylindrical surface is estimated as the torque on a cylindrical section, of
height 2h, contained on a cylinder of radius R and of infinite axial extent.
The simple addition of these two estimates gives an approximation to D(s)
which neglects the ‘‘edge effect’’ due to the deviation of the fluid flow
pattern in the vicinity of the rims of the disk from the flow patterns near
either of the infinite surfaces. For a more accurate approximation, one may
then evaluate the edge effect as a perturbation, as has been done by Azpeitia
and Newell [16]. For D(s) we use the approximation,

D(s)=
rd

r̄h
35coth 1b

d
s1/22+4

h
R
6 s3/2+B 1 d

R
2 s+C 1 d

R
22

s1/24 , (4)

where

B=
16
3p

1 4p

`27
− 12+6

h
R

and C=
17
9

+
3
2

h
R

. (5)

This expression describes an instrument with fixed plates a distance b

above and below the disk. The disk is made of a material that has a den-
sity r̄. The boundary-layer thickness d=(g/(rw0))1/2 characterizes the
distance from the disk over which there is appreciable fluid flow. The
hyperbolic cotangent function pertains to the one-dimensional problem of
an infinite plane oscillating below an infinite fixed plane. The terms with
coefficients 4h/R, 6h/R, and 3h/(2R) arise from an expansion of the solu-
tion, exactly expressible in terms of Bessel functions, which pertains to the
one-dimensional problem of an infinitely long cylinder. The terms with
coefficients 16

3p
( 4p

`27
− 1)=2.408 and 17/9 pertain to the edge effect of a free

disk [16], i.e., one with the fixed plates either absent or removed to a great
distance b ± d such that the hyperbolic cotangent function attains the
limit of unity. For a free disk, therefore, Eq. (4) gives D(s) correctly to
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second order in powers of (d/R)2 and so furnishes the basis for absolute
measurements when R ± d [18].

In Eq. (4), the hyperbolic cotangent function describes a disk between
fixed plates, but Eq. (5) implements the edge effect of a free disk. We
accept this inconsistency because no expression is available for the edge
effect for the case where fixed plates are present with b comparable to d,
so that the plates are close enough to the disk to modify the flow, but not
so close to allow accurate approximations based on b ° d. (The case of
fixed plates with spacing b ° d has been treated by Newell [19].) We
find, however, that Eq. (4) with Eq. (5) yields working equations that are
accurate to a few percent when applied to our viscometer, even though this
instrument has fixed plates at distances of about 3d from the disk which do
influence the disk’s motion and therefore alter the edge effect. In order to
achieve better accuracy, we use a calibration procedure in which we adjust
the above-mentioned coefficients slightly as guided by measurements we
perform in a liquid of known properties. This calibration, which we
describe briefly in the experimental section, does not affect any of the
qualitative aspects of simultaneous measurements with which we are most
concerned in this paper.

The complex equation Eq. (3) with Eq. (4) is most useful when its real
and imaginary parts are exhibited explicitly. To do this we follow Ref. 20
and introduce a notation for the real and imaginary parts of the required
powers and functions of the complex constant s=(− D+i) G:

s1/2 — x+iy (6a)

with

x=3G

2
[(D2+1)2 − D]4

1/2

and y=
G

2x
, (6b)

s3/2 — − H2+iH1 (6c)

with

H1=3Gx/2 −1 G

2x
23

and H2=3G2/4x − x3, (6d)

coth 1b

d
s1/22 — K2(d, D, G) − iK1(d, D, G) (6e)
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with

K1(d, D, G)=
sin(G

x b/d)
cosh(2xb/d) − cos(G

x b/d)
(6f )

and

K2(d, D, G)=
sinh(2xb/d)

cosh(2xb/d) − cos(G
x b/d)

. (6g)

For later, it will be helpful to keep in mind that whereas x, y, H1, and H2

are functions of D and G=T0/T only and, therefore, are known quantities
once a measurement has been made, K1 and K2 are (through d) functions
also of g and r and are, therefore, quantities not known a priori. The real
and imaginary parts of Eqs. (3) and (4) can now be written explicitly:

G2 − 1 − (DG − D0)2

=
rd

r̄h
3[H1K1 − H2K2] − 4

h
R

H2 − BGD 1 d

R
2+Cx 1 d

R
224 , (7a)

2(DG − D0) G

=
rd

r̄h
3[H1K2+H2K1]+4

h
R

H1+BG 1 d

R
2+C

G

2x
1 d

R
224 . (7b)

It is useful to note that the left-hand side of Eq. (7a) is approximately equal
to the negative of twice the fractional ‘‘period shift’’ − 2(T − T0)/T, while
the left-hand side of Eq. (7b) is approximately equal to twice the damping
2D. We therefore refer to Eq. (7a) as the ‘‘period’’ equation and to Eq. (7b)
as the ‘‘damping’’ equation. These approximations follow from the facts
that G is close to unity and that D0 ° D ° 1. In the remainder of this
paper we set D0, the damping in vacuo, to zero for simplicity.

3. NATURE OF SOLUTIONS OF THE WORKING EQUATIONS

3.1. Solution of the Individual Equations for the Viscosity with Specified
Density

The quantities D and G=T0/T are measured in an experiment. If the
density r is known, either of Eqs. (7) may be solved for d. Then the viscos-
ity may be found from g=2prd2/T0. We denote by gper and gdamp the vis-
cosities so determined by, respectively, the period and damping equations.
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Now we consider the sensitivity of gper and gdamp to small fluctuations dT,
dT0, dD in the values of the periods in fluid and in vacuo, and in the
damping:

dgper

gper
4

2
T − T0

(dT − dT0), (8a)

dgdamp

gdamp
4 2

dD

D
−

dT
T

. (8b)

These equations show that gdamp is negligibly sensitive to dT0 and sensitive
to dT only through the ratio of dT to the total period T. On the other
hand, gper is negligibly sensitive to D but sensitive to both dT and dT0

according to their ratios to the much smaller quantity T − T0. Thus the
finite precision with which T can be measured causes much greater impre-
cision in gper than in gdamp. Since modern experimental methods allow time
intervals to be measured very accurately and precisely, the fluctuations dT
can be kept so small that the resulting scatter in gper need not present a
serious problem in itself. Much more troublesome is the fact that Eq. (8a)
shows that the period equation requires the value of T0 to be known just as
accurately as the value of T. This may be difficult because T0 is not acces-
sible to direct measurement when the instrument is being used to study a
fluid. Thus, T0 must be known from a measurement made at another time,
and this value must still be accurate despite, for example, the thermal and
pressure cycling to which the instrument has been subsequently subjected.
For this reason, when the density r is independently known, the viscosity g

is invariably calculated from the damping equation and the period equation
is used at most as a consistency check.

With a good instrumental design, however, the period in vacuo, T0,
can be quite stable. For example, our viscometer, used to collect the data
described below, has a vacuum period of about 16.8 s reproducible to
within a few ms before and after a typical measurement program, suggest-
ing that the period equation could prove useful. This observation opens the
possibility that the damping and the period equations may be solved
simultaneously when both the viscosity g and the density r are treated as
unknowns. Our main interest in this paper is to discuss some of the quali-
tative aspects of solving Eqs. (7) for r and g simultaneously which are very
different from solving either of them separately for g alone with r specified
independently. Clearly, for such a simultaneous method to work it is nec-
essary that Eqs. (7) must in some sense be independent. We shall see that
their independence can be quite different depending on whether or not fixed
plates are present. Nieuwoudt et al. [17] have considered the situation for
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a free disk. We begin by reviewing their results, adding some new physical
interpretation. We shall then turn to a disk between fixed plates.

3.2. Simultaneous Solutions of Working Equations for a Free Disk

Nieuwoudt et al. [17] have shown that for the free disk in the case
that R ± d holds so strongly that the terms in Eqs. (7) with coefficients B
and C can be neglected, the simultaneous method fails completely. We can
see this by inspecting Eqs. (7) (after setting K1=0 and K2=1 as is the case
for a free disk) and noting that, with B=C=0, the fluid properties affect
the disk’s motion only through the value of the combination rd. As a
result, in this case D and T are not independent at all: one can be calculated
from the other through a relation in which the properties of the fluid do
not appear. This relation is

1 − G2+D2G2=2
H2

H1
DG2, (9)

where H1 and H2, both approximately equal to 1/`2 as defined in
Eqs. (6), depend only on D and G. This is the relation that results when rd

is eliminated from Eqs. (7) in the case of a free disk with B and C set to
zero. A useful approximate form of Eq. (9) is the simple expression G=
1 − D+O(D2) showing that, for a free disk with R ± d holding so strongly
that the higher-order terms in Eqs. (7) (i.e., those with the coefficients B
and C ) can be neglected, the fractional period shift (T − T0)/T approxi-
mately equals the damping and, in fact, in this limit can be calculated
exactly from the damping (via Eq. (9)) without any information about the
fluid having to be specified. Clearly in this situation a measurement of T
cannot provide any more information about the fluid than is present in the
value of D, so the simultaneous method cannot work. Thus, it is seen that,
in the case of a free disk, it is required that d/R be large enough that at
least the terms with coefficient B make a significant contribution to the
right-hand sides of Eqs. (7). For the free disk, Nieuwoudt et al. [17]
introduced a small parameter b=B(rR/(r̄h))(d/R)2 which characterizes
the ‘‘free’’ part of the period shift (T − T0)/T, i.e., the part which is not
attributable to just the damping through Eq. (9) but rather depends expli-
citly on the fluid properties. In terms of b, we have G=1 − D+b/2+
O(D2, b2) holding for a free disk in the case that d/R is of such size that the
first-order terms (coefficients B) must be retained but the second-order
terms (coefficients C ) may still be dropped. Thus we see that, with a small
but non-negligible value for b, while the period shift (T − T0)/T and
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damping D are nearly equal and nearly proportional to the single combi-
nation rd (i.e., proportional to `rg), the higher-order terms make contri-
butions such that the small difference between these quantities, (T − T0)/T
− D 4 − b/2, is proportional to an independent combination rd2 (i.e., pro-
portional to g). This independence makes it possible to determine both g

and r.
Equations analogous to Eqs. (8) for the sensitivity of g and r, as cal-

culated simultaneously from Eqs. (7) in the case of a free disk, to fluctua-
tions dD, dT, and dT0 in the values of the measured quantities, are

dg

g
4

2
b
1 − dT+dT0

T
+dD2 (10a)

dr

r
4

2
b
1dT − dT0

T
− dD2 . (10b)

As expected, the large factor b−1 appears as an amplifier of errors in the
measured quantities T, T0, and D.

We see from Eqs. (10) that a free oscillating-disk viscometer yields the
density and the viscosity with equal precision. Actually, Eqs. (10) predict
that the viscosity and density increments are exactly equal and opposite.
This exact equality is a consequence of approximations made in deriving
Eqs. (10); when calculated numerically from the full working equations, the
viscosity and density increments differ slightly from each other (see Table I,

Table I. Sensitivity of Simultaneously Calculated Fluid Propertiesa

g=1000 mPa · s d=1.635 mm
r=1000 kg · m−3 b=B rR

r̄h (d/R)2=0.015

b 2.249 mm .

T 17.385098 s 17.641204 s
D 0.058796 0.053889

b
2g

“g

“D +0.16 +1.00
b

2r

“r

“D − 0.04 − 0.98
bT
2g

“g

“T − 0.04 − 0.85
bT
2r

“r

“T +0.28 +1.16

a Sensitivity of the simultaneously calculated fluid properties to the
period and damping for a disk between plates (b=2.249 mm) and
for a free disk (b=.). The instrumental parameters have the values
given in Table II. The fluid properties are approximately those of
water at 20°C.
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where all instrumental parameters have been set to the values that pertain
to our instrument). As we show below, the rough equality of viscosity and
density increments remains approximately true when fixed plates are
present. This situation is thus quite different from that presented by the
vibrating-wire viscometer, which is also capable of simultaneous mea-
surements of the viscosity and density [11, 12]. As we mentioned above,
the vibrating-wire viscometer can determine the density with greater preci-
sion than the viscosity when a sinker is used to tension the wire.

3.3. Simultaneous Solutions of the Working Equations for the Disk Between
Fixed Plates

Now we consider the situation when fixed plates are positioned above
and below the oscillating disk at a distance b from the disk’s flat surfaces.
The behavior of the simultaneous solution of Eqs. (7) is now quite different
from the free-disk case. The reason is that the K1(d) and K2(d) functions
(Eqs. (6f ) and (6g)), which attain the limits K1(d)=0 and K2(d)=1 when
the plate spacing b is large compared to the boundary layer thickness d

(i.e., in the free-disk limit), are strong, independent functions of d for the
case where b 4 d. The consequence is that Eqs. (7) can remain a non-
degenerate system even without the contribution of the higher-order terms.
The stronger independence of Eqs. (7a) and (7b) greatly increases the free
part of the period shift, i.e., the part of the shift that depends explicitly on
the fluid properties. As was shown in the previous sub-section, for the free
disk the shift is given by G=1 − D+b/2, where the free part b/2 is very
small. The greater independence of T and D, and thus of Eqs. (7), when
fixed plates are present, can result in a significant improvement of the
precision of simultaneous measurements over that achieved by the same
instrument without the plates.

Because of the complexity of the K1(d) and K2(d) functions, the
qualitative aspects of the simultaneous solution of Eqs. (7) with plates
present are easier to study numerically and graphically than analytically.
We therefore assign values to the instrumental parameters R, T0, b, etc.,
and to the measured quantities T and D, and then obtain numerically solu-
tions r and g to Eqs. (7a) and (7b), using a two-dimensional version of
Newton’s method. The values we assign to the instrumental parameters
appear in Table II. They apply to the instrument we used for the experi-
mental work described below and in Refs. 13 and 14. Table I shows how,
for this instrument, the precision of simultaneous measurements is greatly
improved by the presence of fixed plates. The table shows the case of a
fluid with density r=1000 kg · m−3 and viscosity g=1000 mPa · s, values
close to those of water at 20°C. (To be clear, to construct Table I, we first
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Table II. Instrumental Parameters of the
Oscillating-Disk Viscometer

R=33.972 mm
2h=3.210 mm
b=2.249 mm
r̄=8799 kg · m−3

T0 =16.7894 s

solved Eqs. (7) for T and D with r and g fixed at these values. Then we
held T and D fixed at slightly perturbed values and solved for r and g,
simulating the effect of errors in the directly measured quantities on the
calculated fluid properties. We did this for the case of a free disk (b=.)
and a disk between fixed plates with b=2.249 mm). The table shows the
values of the fractional derivatives (“g/“D)/g, (“r/“D)/r, (“g/“T)(T/g),
and (“r/“T)(T/r). Guided by Eqs. (10) we apply a factor of b/2 to these
derivatives. As a result, their values are close to +1 and −1 for the free
disk, in accord with the analysis of Ref. 17. For the disk between fixed
plates, the magnitudes of these derivatives are much smaller, indicating a
great improvement in precision.

Unfortunately, as we now show, this improvement generally is not
uniform over a wide range of values of the properties of the fluid. By con-
trast, the sensitivity of simultaneous measurements made with a free-disk
instrument depends, through b, on the density not at all and only linearly
on the viscosity and thus does not vary greatly (by more than a factor of
five, say) over a wide range of fluids and conditions. If the disk is between
fixed plates, however, the sensitivity is likely to vary much more as the fluid
properties change. In fact, we find that the plate spacing b and the vacuum
period T0 can be chosen so that, with respect to simultaneous measure-
ments, the disk between plates out-performs the free disk over most of the
ranges of values commonly assumed by r and g in liquids. But, when the
values of r and g are such that the boundary layer thickness d falls near
one of several critical lengths dc, the disk between plates in the simulta-
neous measurement mode becomes inferior to the free disk. These critical
lengths are functions of the instrumental design. If the fluid’s density and
viscosity are such that d exactly equals one of the critical lengths, Eqs. (7)
become a degenerate system and the simultaneous calculation fails.

The existence of these critical values for d is related to the fact that, for
a fixed set of instrumental parameters and a particular assignment of the
variables T and D, Eqs. (7) usually have multiple simultaneous solutions r

and g. Normally, these multiple roots are so well separated that there is,
in practice, no ambiguity about which one actually applies to the fluid.
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As the fluid properties change such that the boundary layer thickness d

approaches one of the critical lengths dc, however, a pair of roots coalesces
and the fractional derivatives of the type listed in Table I grow without
bound. Moreover, near a critical length dc, small fluctuations in the values
of T and D may cause Eqs. (7) to have no solution at all. By contrast, for a
free disk, for any assignment (T, D) for the motional parameters, Eqs. (7)
always have a unique solution (r, g) for the fluid properties (provided that
R ± d which always holds for a practical viscometer of this type).

The physical origin of this behavior is revealed more clearly by con-
sideration of a slightly different mathematical problem, namely the behav-
ior of the period T and damping D as we vary the plate spacing b at con-
stant fluid viscosity and density. Figure 1 shows T and D as functions of b.
The calculation was done with our standard choices for the instrumental
parameters (Table II) and with g=1000 mPa · s and r=1000 kg · m−3. With
these fluid-property values and the standard value T0=16.7894 s for the
instrument’s vacuum period, the boundary layer thickness d has the (fixed)
value of 1.635 mm. The values of T and D that result for each choice for
the plate spacing b are indicated by their fractional deviations from their
free-disk values T. and D. (see Table I). For small spacings b/d < 2, D

decreases and T increases as b increases, while for large spacings b/d > 4,
T and D are seen to saturate to their infinite-spacing values T. and D..
Over the intermediate range 2 < b/d < 4, however, T and D have non-
monotonic dependences on b: D attains a minimum and T attains a
maximum. In fact, there is an infinite series of such extremal values for
each of T and D as b/d increases above 2 (d being fixed). The amplitudes

Fig. 1. The period T and the damping D as func-
tions of the fixed-plate spacing b. The boundary-
layer thickness d is fixed at 1.635 mm. The period has
a maximum, and the damping has a minimum.
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of these oscillations, however, decrease rapidly and only the first extremum
in each series is visible in the figure. In Ref. 21, it is shown that one or the
other of T and D becomes extremal with respect to variation of b at fixed
values of the fluid properties whenever b is approximately an integer mul-
tiple of pd/23/2, although only the first few extrema may differ appreciably
from the free-disk limits. This condition has the following interpretation.
The fluid velocity in the region between the fixed plates and the disk’s flat
surfaces, not too close to the edges, has approximately the form of a
superposition of outward- and inward-traveling shear waves. The inward-
traveling wave is due to a reflection of the outward-traveling wave by the
fixed plate. The relation between the wavelength l and the boundary layer
thickness d of a shear wave is l=23/2pd [22]. So, values for T and D

extremal with respect to variation of b occur when the plate spacing is an
integral multiple of l/8. For such spacings, at the surface of the disk the
phase of the returning reflected wave, which has traveled a total distance
of 2b, differs from the phase of the outgoing wave by 0, p, or ± p/2. Each
extremal condition (maximum or minimum of T or D) corresponds to one
of these four phase differences.

Returning to the problem of the simultaneous calculation of viscosity
and density, we reiterate that the critical condition for the method’s failure
is that two normally distinct pairs of fluid property values, say (r1, g1) and
(r2, g2), which solve Eqs. (7) as functions of the motional parameters
(T, D), coalesce into a single, doubly degenerate solution (r, g) for some
T and D. The existence of multiple solutions to Eqs. (7) and the possibility
of their coalescence is again due to phase-interference effects between the
outward-traveling shear wave and its inward-traveling reflection. Unlike
the behavior of T and D considered as functions of b at constant r and g,
however, the critical condition for the simultaneous measurement of r and
g as functions of T and D at constant b does not give rise to extremal
values for any quantities, nor is the phase relation between the outward-
and inward-traveling shear waves particularly simple when the critical
condition holds. In Ref. 21 it is shown that the critical condition holds
when the fluid properties (and the instrument’s vacuum period T0) are such
that the boundary layer thickness d takes on one of a discrete set of critical
lengths dc which depend only on R, h, and b. To find these critical lengths
as functions of R, h, and b, it is generally necessary to proceed numerically
according to a recipe given in Ref. 21. Taking R, h, and b as specified
in Table II, we find that our instrument has two critical lengths: dc=0.495
and 0.753 mm. The second of these lengths can be important when our
instrument is used in the simultaneous mode. For example, water near
140°C has properties r 4 920 kg · m−3 and g 4 180 mPa · s which, with our
instrument’s vacuum period T0=16.7894 s, yield d 4 0.72 mm for the
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boundary layer thickness. The existence of our instrument’s smaller critical
length is less likely to be important, since a typical liquid would seldom be
of such low viscosity and high density as to yield d near the smaller critical
length.

3.4. Approximate Analytic Treatment of the Disk Between Fixed Plates

An analytic treatment of simultaneous calculations, even if applicable
only in a special case, is a much desired supplement to numerical work,
both as a guide in determining an instrument’s critical lengths and for the
derivation of formulas analogous to Eqs. (10). An approximate analytic
treatment is possible in the special case of disks with high aspect ratio
(R ± h) for which R ± d holds so strongly that the higher-order terms in
Eqs. (7) can be dropped [21]. For brevity, we call this the case of a flats-
dominated disk, since in this limit one need take account only of the drag
on the flat surfaces of the disk and the edge effect may be ignored. (As has
been discussed above, simultaneous measurements fail in this limit if the
disk is free, for the assumption is equivalent to setting b=0.) For the flats-
dominated disk, only the terms in K1(d) and K2(d) survive on the right-
hand sides of Eqs. (7). Also, the damping and period shift are small in this
limit, so H1 4 H2 4 1/`2 are good approximations and the arguments of
all the transcendental functions that appear in the definitions of K1(d) and
K2(d) reduce to a common variable z=`2 b/d (see Eqs. (6)). The condi-
tion for the coalescence of double solutions of Eqs. (7), according to which
d is approaching one of the instrument’s critical lengths dc, then becomes
a transcendental equation in the variable z. Only one root exists to this
equation, implying that there exists a unique critical length whose value
dc=0.36016b depends only on the fixed plate spacing b. The critical con-
dition for the breakdown of simultaneous measurements is therefore
d=dc=0.36016b, which, as noted above, does not imply a simple ratio
between the wavelength of the shear wave and the plate spacing. However,
the existence of multiple solutions and their possible coalescence is due to
interference effects between the outward- and inward-going shear waves,
for it is just these phase effects that are described by the K1(d) and K2(d)
functions.

The finding dc=0.36016b for the flats-dominated disk between fixed
plates can be tested by applying it to our instrument, for which R ± h and
R ± d hold rather well. Our instrument’s two critical lengths, dc=0.495
and 0.753 mm, can be written, respectively, as dc=0.220b and 0.335b,
where b=2.249 mm is the fixed plate spacing. (Recall, though, that both
these critical lengths depend on the disk’s radius R and half-height h, which
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have been set to the values appearing in Table II for the numerical compu-
tation of the critical lengths dc.) The rough agreement of the coefficients
0.335 and 0.36016 shows that our instrument’s larger critical length corre-
sponds to the unique critical length of the ideal flats-dominated disk
between plates, but the exact value for the length is modified by the small
but finite ratios h/R and d/R that hold for our instrument. The instru-
ment’s smaller critical length, on the other hand, owes its very existence to
these non-vanishing ratios, and no account of it is given by the treatment
of the ideal flats-dominated disk. We can expect that any instrument that
maintains R ± h and R ± d has a critical length near one third of the fixed
plate spacing b. Its other critical lengths, if any, depend on R, h, and b in
an unknown way and have to be searched for numerically. Which, if any,
of these critical lengths impacts on a program of simultaneous measure-
ments depends on the instrument’s vacuum period T0: it may be possible to
choose T0 such that the boundary layer thickness d stays well away from a
critical length dc over the ranges of viscosity and density that are of inter-
est. This is true in the case of our instrument’s smaller critical length, but,
as noted above, its larger critical length dc=0.335b can affect simultaneous
measurements when the viscosity is low and the density is high, relative,
say, to a typical organic liquid.

3.5. Consequences for Precision of Simultaneous Measurements

The analytic treatment of the flats-dominated disk between fixed
plates also yields equations analogous to Eqs. (10) for the precision of
simultaneous measurements:

dg

g
4 0.2

r̄hb

rd2
1 − dT/T+dT0/T+dD

d/b − dc/b
2 , (11a)

dr

r
4 0.2

r̄hb

rd2
1dT/T − dT0/T − dD

d/b − dc/b
2 , (11b)

where dc=0.36016b. Comparison of Eqs. (11) and (10) shows that simul-
taneous measurements made with a disk between plates will tend, overall,
to be more precise than those made with a free disk, because the pre-
factor 0.2r̄hb/(rd2) may be considerably smaller than the factor 2/b=
2r̄hR/(Brd2) (by a factor of about 0.02 in the case of our instrument). In
Eqs. (11), however, an amplifying factor b/(d − dc) diminishes this gain
and, with d sufficiently close to dc, results in the failure of the simultaneous
method.
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Equations (11) are only rough approximations. For example, like
Eqs. (10) for the free disk, they predict that the viscosity and density
increments are equal and opposite, but reference to Table I, which shows
the increments calculated exactly from the full form of Eqs. (7), shows that
this prediction is obeyed only crudely.

We conclude this section with a graphical illustration of the main
points. Figure 2 illustrates how the fractional viscosity increment dg/g

due to fixed increments dD and dT changes as the fluid properties take on
a range of values. To make the plot, we held the density fixed at r=
1000 kg · m−3 and solved Eqs. (7) for T and D as functions of the viscosity.
Then we applied to these values of T and D the increments dT=+0.1 ms
and dD=+4 × 10−6, which are representative of the precision with which
the period and damping are measured in our laboratory. Finally, we re-
solved Eqs. (7) for g and r with T and D assigned their incremented values.
This process imitates the introduction of errors into the measurements of
the period and damping. Two such calculations were carried out, one for
the free disk and one for the disk between plates with b=2.249 mm, with
all other instrumental parameters as given in Table II.

For all viscosities slightly above 200 mPa · s, the viscosity increment
obtained when plates are present is much smaller than the increment
obtained for a free disk, indicating that a more precise measurement results
when the disk is between fixed plates. Around 200 mPa · s, however, the
viscosity increment with plates present becomes very large as the boundary
layer thickness d comes close to the instrument’s critical length dc=
0.735 mm. The broken curves show the results of the two calculations of
the viscosity increment made as described, i.e., by direct, numerical solu-
tions of Eqs. (7) in their full form. The smooth curve was calculated from

Fig. 2. The relative error dg/g of the vis-
cosity when it is measured simultaneously
with the density. The density r is fixed at
1000 kg · m−3 and the error is shown as func-
tions of the viscosity g and of the boundary-
layer thickness d=(gT0/2pr)1/2. Fixed errors
dT=0.1 ms and dD=4 × 10−6 are assumed
for the period and damping. The broken
curves have been calculated numerically from
the working equations Eqs. (7). The smooth
curve is a plot of Eq. (11a), an approximation
derived by taking account only of the drag on
the disk’s flat surfaces.
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Eq. (11a), which applies to flats-dominated disks. In using Eq. (11a),
however, we set dc=0.735 mm, which is one of our instrument’s actual
critical lengths as determined by the numerical treatment of Eqs. (7) in
their full form, rather than to the value dc=0.36016b=0.810 mm pre-
dicted by the approximate analytical treatment of the flats-dominated disk.

Since these values for the critical length are not too different and since
the right branches of the two curves describing the disk between plates lie
very close, we can conclude that simultaneous measurements made with
our instrument are given a good qualitative description by the flats-domi-
nated disk approximation, provided the fluids studied have properties such
that the boundary-layer thickness is larger than, say, d=0.7 mm (see
Fig. 2). This will be the case for most liquids. For such fluids, the flats-
dominated disk approximation gives a rough estimate of the precision that
can be attained, including the loss of all precision that occurs when d

approaches dc=0.735 mm. For fluids such that d < 0.7 mm, on the other
hand, the exact and approximate increments dg/g disagree greatly because,
as noted above, the flats-dominated disk has only one critical length. The
actual instrument, however, has finite values for the ratios h/R and d/R
which engender a second critical length, in this case at dc=0.495 mm,
where the fluctuations of the calculated fluid properties again become infi-
nite. The effects of this second divergence can be seen in the figure; they are
not accounted for by the flats-dominated disk approximation. Therefore, it
would be well to determine all of the critical lengths of one’s instrument
numerically, and apply Eqs. (11) with care.

4. EXPERIMENT

A complete description of our oscillating-disk viscometer can be found
in a previous publication [14]. Here we mention only a few details.
Because the edge effect in the case of comparable fixed plate spacing and
boundary layer thickness is unknown, we use in the working equations the
expression for the edge effect of a free disk (i.e., Eq. (5)), and then remove
the resulting error by means of a calibration [13, 14]. To calibrate Eqs. (7),
we fill the viscometer with water, whose properties we take from the litera-
ture [23, 24]; then we measure the period T and the damping D. Next we
evaluate the right and left sides of Eqs. (7), generally finding that they are
not equal. We make them equal by adding within the braces of the right
sides of Eqs. (7a) and (7b), respectively, the required numbers F and E. We
carry this out over a range of temperature so that we may then express E
and F as polynomials in d. These calibration functions E(d) and F(d) are
then incorporated into Eqs. (7) for measurements on fluids with unknown
properties. We find that E(d) and F(d) lie within ± 0.01, whereas they add
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to terms in Eqs. (7) that are of order unity. Consequently, they do not
affect the qualitative behavior of Eqs. (7) that is our main concern. They
do, however, cause small shifts in the values of the instrument’s critical
lengths. The calibrated working equations have a critical length at dc=
0.750 mm instead of 0.735 mm.

Our instrument has a metallic suspension wire made from a platinum/
tungsten alloy selected for minimum hysteresis of its elastic properties
under temperature and pressure cycling, and for optimal reproducibility of
the rest position of the disk. The stiffness of the wire depends on tempera-
ture, so it is necessary to take account of the variation of the vacuum
period T0 with temperature. In fact, the vacuum period T0 is better defined
as the period that would be measured in the absence of the hydrodynamic
drag exerted by the fluid, but under the otherwise identical conditions that
apply during the measurement with the fluid present. Since the moment of
inertia of the disk depends on the pressure (i.e., because of compression), it
is also necessary to account for the variation of T0 with pressure. Table II
gives the value of T0 at 25°C and zero pressure. The temperature and pres-
sure coefficients of T0 are approximately 2.1 ms · K−1 and − 0.15 ms · MPa−1

[13]. It may be noted that although T0 applies in vacuo, its value derives
from measurements made with fluid present. To obtain T0 and its tempera-
ture dependence, we measure the period in a gas at atmospheric pressure,
then apply a correction for the drag exerted on the disk by the gas [17, 25].
The pressure coefficient of T0 is inferred from the period in pressurized
water [13].

We have used the instrument to measure the viscosity of liquid toluene
over the temperature and pressure ranges of 25 to 150°C and 0 to 30 MPa
[14]. Figure 3, reproduced from Ref. 14, gives an overview of these data.
In Ref. 14, we gave the viscosities as we computed them from the damping
equation (Eq. (7b)) with the density of toluene calculated from a published
equation of state [15]. Here (as in Ref. 13), we re-analyze the period and
damping data to give the viscosity and density simultaneously. Results for
a typical isobar, P=15.0 MPa, are shown in Fig. 4 in the form of deviation
plots of the simultaneously calculated viscosity from the values published
in Ref. 14 and the simultaneously calculated density from the values pre-
dicted by the equation of state published in Ref. 15. (These plots also
appeared in Ref. 13.) For both properties the deviations fall within ± 0.4%
for all pressures and for temperatures up to 125°C. Deviations a little
larger than ± 1% occurred for the highest temperature, 150°C. We attribute
these larger deviations to inaccuracies of our temperature measurements at
the highest temperatures, which cause inaccuracy in the calculation of the
density from the equation of state. (The equation of state may itself be in
appreciable error at the higher temperatures: the measurements of Ref. 15
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Fig. 3. Viscosity of toluene, from Ref. 14.
n, 24°C; N, 30°C; h, 41°C; H, 49°C;
i, 60°C; I, 77°C; g, 98°C; G, 121°C;
j, 152°C.

upon which it is based were made at temperatures that did not exceed
100°C. To treat the higher temperatures, we simply extrapolated the
density equation of Kashiwagi et al. [15].) The precision of the simulta-
neous measurements, estimated from the scatter of the values found from
three measurements made at each temperature and pressure (and which
have been averaged in the figure), was always at the level of ± 0.2% or
better. This level of precision is about the same as that which we achieved
when the damping equation was used alone with the density specified.
Thus, in these simultaneous measurements we were not affected by the
phenomenon discussed above, namely the sharp loss of precision that
occurs over certain restricted ranges of properties of the fluid. The reason is

Fig. 4. Viscosity and density of toluene
obtained by simultaneous solution of the
coupled working equations Eqs. (7), as functions
of temperature. The viscosities are compared to
those we reported in Ref. 14, where we used an
equation of state for the density [15] and solved
only the damping working equation. The densi-
ties are compared to the predictions of the
equation of state reported in Ref. 15. Data
shown are for the P=15.0 MPa isobar.
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simply that in these measurements with toluene, the boundary layer thick-
ness d never fell below 0.84 mm and therefore never approached the
instrument’s critical length dc=0.75 mm.

We may conclude that for measurements of viscosity with our oscillat-
ing-disk viscometer, a knowledge of the fluid density is not necessary
because, by using all the information contained in the measurements of the
period and damping, and the complex equation that relates these quantities
to the fluid properties, it is possible to obtain results essentially identical
to those we obtain by the conventional method in which the density is
supplied independently. Specifically, with our instrument, a typical preci-
sion of the simultaneously measured viscosity is ± 0.2%, while the agree-
ment of the simultaneously measured viscosity with the viscosity obtained
from the damping equation alone is typically ± 0.4%. Moreover, in the
simultaneous method along with the viscosity we can measure the density
with a typical precision of ± 0.2% and an uncertainty of ± 0.4%.

New correlations for the density and viscosity of toluene have been
recommended recently by Assael et al. [26]. Figure 5 compares the viscos-
ity we found by the simultaneous method with the values predicted by the
correlation of Ref. 26. The 15.0 MPa isobar is again shown as typical, but
only the temperatures below 100°C are shown since this temperature is the
limit of the correlation’s validity. The deviations are between 0 and +2%.
The claimed accuracy of the viscosity correlation is ± 2%. The simulta-
neously determined density also can be compared with the equation of state
recommended by Assael et al. [26]. Over their ranges of validity (tempera-
tures up to 100°C), the density equations of Refs. 15 and 26 agree within
± 0.1%, and their extrapolations to 150°C agree within ± 0.2%. Therefore,
this comparison results in a plot very similar to Fig. 4b.

5. CONCLUSIONS

In this paper we have considered the use of oscillating-disk viscometers
for simultaneous measurements of the viscosity and density of a fluid. We

Fig. 5. Viscosity of toluene obtained by simul-
taneous solution of the coupled working equa-
tions Eqs. (7), as functions of temperature. The
viscosities are compared to a recently recom-
mended correlation [26]. The pressure is
15.0 MPa; the temperature is restricted to the
correlation’s range of validity.
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found that a properly designed instrument is capable of yielding for the
viscosity essentially the same results that are obtained by the more com-
monly used method in which the density is supplied independently. This
procedure allows the measurement of the viscosity of fluids of unknown
density and, in the process, determines the density at the same level of pre-
cision that is attained for the viscosity. This precision is typically at the
level of several tenths of a percent, however, so with regard to density the
method is out-performed by many stand-alone densimeters.

As a practical demonstration of the method, we re-analyzed in the
simultaneous calculation mode some raw data we previously collected for
a study of the viscosity of liquid toluene [14]. We found that with the
re-analysis according to the simultaneous mode of calculation, we essen-
tially reproduced our previous viscosity values, which had been found by
the conventional analysis in which the density is independently supplied.
The agreement was within ± 0.4% except at the very highest temperatures.
The new analysis also furnished measurements of the density with the same
level of accuracy.

We discussed at length a subtle effect, not commented on before,
which is introduced into the simultaneous method by the presence of the
fixed plates often used with oscillating-disk viscometers. Fixed plates tend
to improve greatly the precision of simultaneous measurements. At the
same time, however, it has to be recognized that the presence of fixed plates
is responsible for the existence of multiple solutions of the working equa-
tions, and causes the precision of simultaneous measurements to fall dra-
matically when the ratio of the viscosity to the density falls close to certain
values that depend on the instrument’s design. Also, for simultaneous
measurements it is necessary to know the disk’s period of oscillation in
vacuo T0 with as much accuracy as is required for the measurement of T,
the period with fluid present. This requirement makes a significant demand
on the instrument’s stability and also requires the experimenters to take
account of small effects, such as the dependence of T0 on pressure, which
are not important when the viscosity is calculated from the damping with
the density supplied independently.
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